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Abstract 

Few plan recognition algorithms are designed to tolerate 
input errors. We describe a case-based plan recognition 
algorithm (SET-PR) that is robust to two input error types: 
missing and noisy actions. We extend our earlier work on 
SET-PR with more extensive evaluations by testing the utility 
of its novel action-sequence representation for plans and also 
investigate other design decisions (e.g., choice of similarity 
metric). We found that SET-PR outperformed a baseline 
algorithm for its ability to tolerate input errors, and that 
storing and leveraging state information in its plan 
representation substantially increases its performance.  

1. Introduction   

We are developing an intelligent agent to control a robot in 

joint human-robot team missions. This robot perceives the 

actions of its human teammates, recognizes their plans and 

goals, and then selects its actions accordingly. Our plan 

recognizer must operate on action information perceived by 

lower-level perception that is prone to errors (i.e., 

mislabeled and/or missing actions in the observed action 

sequences). Thus, error tolerance is a key design concern for 

plan recognition. 

We describe the Single-agent Error-Tolerant Plan 

Recognizer (SET-PR), a case-based algorithm. Plan 

recognition algorithms typically employ a model or library 

of plans to recognize an ongoing plan from observed action 

sequences. SET-PR’s plan representation (action-sequence 

graphs) encodes (1) knowledge about actions performed by 

an observed agent, as is normally done, and (2) the 

subsequent state. That is, plans in SET-PR’s plan library 

contain action-state sequences rather than only action 

sequences. To process these, SET-PR performs graph 

matching to retrieve candidate plans, and thus must compute 

similarity efficiently. Degree sequence similarity metrics 

(e.g., Johnson, 1985; Bunke and Shearer 1998; Wallis et al. 

2001) can be used for this task, but it is not clear which is 

preferable.  

In §2 and §3, we describe related work and SET-PR, 

respectively. We introduced SET-PR in (Vattam et al. 2014) 

and reported its performance at varying levels of input error. 

In §4 we extend our empirical study by comparing SET-
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PR’s ability to tolerate input errors vs. baselines, and 

studying how its plan representation and choice of similarity 

function influences its ability to tolerate errors. We found 

support for our hypotheses that SET-PR’s action-sequence 

graph representation for plans and the inclusion of state 

information in these representations increases plan 

recognition performance in the presence of input errors. 

Finally, we discuss these results in §5 and provide 

concluding remarks in §6. 

2. Related Work 

Several plan recognition algorithms (Sukthankar et al. 2014) 

have used consistency-based (e.g., Hong 2001; Kautz and 

Allen, 1986; Lesh and Etzioni 1996) or probabilistic (e.g., 

Bui, 2003; Charniak and Goldman, 1991; Goldman et al. 

1999; Pynadath and Wellman 2000) approaches. SET-PR 

exemplifies a less-studied third approach, namely case-

based plan recognition (CBPR) (Cox and Kerkez 2006; 

Tecuci and Porter 2009). Some CBPR algorithms can work 

with incomplete plan libraries, incrementally learn plans, or 

respond to novel inputs outside the scope of their plan 

library using plan adaptation techniques. However, to our 

knowledge none have been designed for error-prone inputs, 

which is our focus. 

Cox and Kerkez (2006) proposed a novel representation 

for storing and organizing plans in a plan library, based on 

action-state pairs and abstract states. It counts the number of 

instances of each type of generalized state predicate. SET-

PR uses a similar representation, but stores and processes 

plans in an action-sequence graph. As a result, our similarity 

metrics also operate on graphs. Our encoding was inspired 

by planning encoding graphs (Serina 2010). Although there 

are syntactic similarities among these two types of graphs, 

important semantic differences exist; Serina’s graphs 

encode a planning problem while ours encode a solution 

(i.e., a grounded plan). 

Recently, Maynord et al. (2015) integrated SET-PR with 

hierarchical clustering techniques to increase its retrieval 

speed. Sánchez-Ruiz and Ontañón (2014) instead use Least 

Common Subsumer (LCS) Trees for this purpose. In this 

 



paper, we focus on SET-PR’s ability to tolerate input errors 

rather than methods for increasing its retrieval speed.  

3. SET-PR 

When our agent receives a set of observations, it invokes 

SET-PR to obtain a hypothesized plan for the observed 

agents. SET-PR is given a plan library ∁ (i.e., a set of cases), 

where a case is a tuple 𝑐 = (𝜋0, 𝑔0), 𝜋0 is a (grounded) plan, 

and 𝑔0 is a goal that is satisfied by 𝜋0's execution.  

Each plan is represented as an action-state sequence 𝕤 =
 〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉, where each action 𝒂𝒊 is a ground 

instance of an operator in the planning domain, and 𝒔𝒊 is the 

state obtained by executing 𝒂𝒊 in 𝒔𝒊−𝟏. We represent an 

action 𝒂 in (𝒂, 𝐬) ∈ 𝕤 as a ground predication 𝒑 =
𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛), where 𝑝 ∈ 𝑷 (a finite set of predicate 

symbols), 𝑜𝑖 ∈ 𝑶 (a finite set of typed constants 

representing objects), and 𝑡𝑖 is an instance of 𝑜𝑖  (e.g., 

stack(block:A, block:B), on(block:A, 

block:B)). A state 𝒔 in (𝒂, 𝐬) ∈ 𝕤 is as a set of facts 

{𝒑𝟏, 𝒑𝟐, ⋯ }, where each 𝒑𝒊 is a predication.  

Inputs to SET-PR are also represented as action-state 

sequences. 

3.1 Action-Sequence Graphs 

SET-PR uses action-sequence graphs to represent action-

state sequences. A labeled directed graph 𝐺 is a 3-tuple 𝐺 =
(𝑉, 𝐸, 𝜆), where 𝑉 is a set of vertices, 𝐸 ⊆ 𝑉 × 𝑉 is a set of 

edges, and 𝜆: 𝑉 ∪ 𝐸 → ℘𝑠(𝐿) assigns labels to vertices and 

edges. Here, an edge 𝑒 = [𝑣, 𝑢] ∈ 𝐸 is directed from 𝑣 to 𝑢, 

where 𝑣 is the edge’s source node and 𝑢 is the target node; 

𝐿 is a finite set of symbolic labels; and ℘𝑠(𝐿), a set of all the 

multisets on 𝐿, permits multiple non-unique labels for a node 

or an edge (for properties of ℘𝑠(𝐿) please see Serina 

(2010)). 

The union 𝐺1 ∪ 𝐺2 of two graphs 𝐺1 = (𝑉1, 𝐸1, 𝜆1) and 

𝐺2 = (𝑉2, 𝐸2, 𝜆2) is the graph 𝐺 = (𝑉, 𝐸, 𝜆), where 𝑉 =
𝑉1 ∪ 𝑉2, 𝐸 = 𝐸1 ∪ 𝐸2, and  

𝜆(𝑥) = {

𝜆1(𝑥), 𝑖𝑓 𝑥 ∈ (𝑉1 ∖ 𝑉2) ⋁ 𝑥 ∈ (𝐸1 ∖ 𝐸2)

𝜆2(𝑥), 𝑖𝑓 𝑥 ∈ (𝑉2 ∖ 𝑉1) ⋁ 𝑥 ∈ (𝐸2 ∖ 𝐸1)

𝜆1(𝑥) ∪ 𝜆2(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 

Definition: Given ground atom 𝒑 representing an action 

𝒂 or a fact of state 𝒔 in the 𝑘𝑡ℎ action-state pair (𝒂, 𝒔)𝑘 ∈ 𝕤, 

a predicate encoding graph is a labeled directed graph 

ℇ𝑝(𝒑) = (𝑉𝑝 , 𝐸𝑝, 𝜆𝑝) where: 

 𝑉𝑝 = {
{𝐴𝑘𝑝

, 𝑜1 , … , 𝑜𝑛} , if 𝒑 is an action    

{𝑆𝑘𝑝
, 𝑜1, … , 𝑜𝑛} , if 𝒑 is a state fact

 

 𝐸𝑝 =

{
[𝐴𝑘𝑝

, 𝑜1] ∪ ⋃ [𝑜𝑖 , 𝑜𝑗]𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛 , if 𝒑 is an action    

[𝑆𝑘𝑝
, 𝑜1] ∪ ⋃ [𝑜𝑖 , 𝑜𝑗]𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛 , if 𝒑 is a state fact

 

 𝜆𝑝 (𝐴𝑘𝑝
) = {𝐴𝑘𝑝

} ;  𝜆𝑝 (𝑆𝑘𝑝
) = {𝑆𝑘𝑝

} ;  𝜆𝑝(𝑜𝑖) = {𝑡𝑖} 

for 𝑖 = 1,… , 𝑛 

 𝜆𝑝 ([𝐴𝑘𝑝
, 𝑜1]) = {𝐴𝑘𝑝

0,1} ;  𝜆𝑝 ([𝑆𝑘𝑝
, 𝑜1]) = {𝑆𝑘𝑝

0,1} ;  

∀[𝑜𝑖 , 𝑜𝑗] ∈ 𝐸𝑝,

𝜆𝑝([𝑜𝑖 , 𝑜𝑗]) = {
{𝐴𝑘𝑝

𝑖,𝑗} , if 𝒑 is an action     

{𝑆𝑘𝑝
𝑖,𝑗} , if 𝒑 is a state fact

 

As an interpretation of this definition suppose we have a 

predication 𝒑 =  𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛). Depending on whether 

𝒑 represents an action or a state fact, the first node of the 

predicate encoding graph ℇ𝑝(𝒑) is either 𝐴𝑘𝑝
or 𝑆𝑘𝑝

 (labeled 

{𝐴𝑘𝑝
} or {𝑆𝑘𝑝

}). Suppose it is an action predicate. 𝐴𝑘𝑝
 is 

then connected to the second node of this graph, the object 

node 𝑜1 (labeled {𝑡1}), through the edge [𝐴𝑘𝑝
, 𝑜1] (labeled 

{𝐴𝑘𝑝
0,1}). Next, 𝑜1 is connected to the third node 𝑜2 (labeled 

{𝑡2}) through the edge [𝑜1, 𝑜2] (labeled {𝐴𝑘𝑝
1,2}), then to the 

fourth node 𝑜3 (labeled {𝑡3}) through the edge [𝑜1, 𝑜3] 

(labeled {𝐴𝑘𝑝
1,3}), and so on. Suppose also the third node 𝑜2 

is connected to 𝑜3 through 𝐴𝑘𝑝
2,3, to 𝑜4 through 𝐴𝑘𝑝

2,4, with 

appropriate labels, and so on. 

Definition: An action-sequence graph of an action-state 

sequence 𝕤 is a labeled directed graph ℇ𝕤 =

⋃ (ℇ(𝒂) ⋃⋃ ℇ(𝒑)𝒑∈𝒔 )(𝒂,𝒔)∈𝕤 , a union of the predicate 

encoding graphs of the actions and state facts in 𝕤. 

Space constraints prevent providing more detail. Please 

see (Vattam et al. 2014) for examples of action-sequence 

graphs and their construction from action-state sequences.  

3.2 Case Retrieval  

SET-PR matches an input action-sequence graph 𝕤𝒕𝒂𝒓𝒈𝒆𝒕 

with plans in the cases of ∁. The case 𝒄 = (𝝅𝟎, 𝒈𝟎) whose 

plan 𝒄. 𝝅𝟎 is most similar is retrieved as the recognized plan, 

and 𝒄. 𝒈𝟎 is the recognized goal.  

To match graphs, we compute their maximum common 

subgraph (MCS). Computing the MCS between two or more 

graphs is NP-Complete, restricting applicability to only 

small plan recognition problems. Alternatively, many 

approximate graph similarity measures exist. One class of 

such similarity metrics, based on graph degree sequences, 

has been used successfully to match chemical structures 

(Raymond and Willett 2002).  

Below, we describe four degree sequence similarity 

metrics that we will test in SET-PR. These metrics, denoted 

as sim𝑠𝑡𝑟, compute plan similarity based on the approximate 

structural similarity of their graph representations. 

Let 𝐺1 and 𝐺2 be the two action-sequence graphs being 

compared. First, the set of vertices in each graph is divided 

into 𝑙 partitions by label type, and then sorted in a non-



increasing total order by degree1. Let 𝐿1
𝑖  and 𝐿2

𝑖  denote the 

sorted degree sequences of a partition 𝑖 in the action-

sequence graphs 𝐺1 and 𝐺2, respectively. An upper bound 

on the number of vertices 𝑉(𝐺1, 𝐺2) and edges 𝐸(𝐺1, 𝐺2) of 

the MCS of these two graphs can then be computed as: 

|mcs(𝐺1,𝐺2)| = 𝑉(𝐺1, 𝐺2) + 𝐸(𝐺1, 𝐺2), where 

𝑉(𝐺1, 𝐺2) = ∑𝑚𝑖𝑛(|𝐿1
𝑖 |, |𝐿2

𝑖 |)

𝑙

𝑖=1

 

𝐸(𝐺1, 𝐺2) =

⌊
 
 
 
∑ ∑

𝑚𝑖𝑛(|𝐸(𝑣1
𝑖,𝑗

)|, |𝐸(𝑣2
𝑖,𝑗

)|)

2

𝑚𝑖𝑛(|𝐿1
𝑖 |,|𝐿2

𝑖 |)

𝑗=1

𝑙

𝑖=1
⌋
 
 
 
 

where 𝑣1
𝑖,𝑗

 denotes the 𝑗th vertex of the 𝐿1
𝑖  sorted degree 

sequence, and 𝐸(𝑣1
𝑖,𝑗

) denotes the set of edges connected to 

vertex 𝑣1
𝑖,𝑗

. 

 We consider the following four similarity metrics, which 

are variations on the above properties. 

 J Johnson (Johnson 1985): 

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

|𝐺1| ∙ |𝐺2|
  

 B Bunke (Bunke and Shearer 1998): 

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

max(|𝐺1|, |𝐺2|)
 

 W Wallis (Wallis et al. 2001): 

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

|𝐺1| + |𝐺2| − |mcs(𝐺1,𝐺2)|
 

 S Simpson (Ellis et al. 1993): 

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

min(|𝐺1|, |𝐺2|)
 

Two plans that are similar in structure can differ 

drastically in semantics. For instance, a plan to travel to a 

grocery store to buy milk might coincidentally be 

structurally similar to a plan to travel to the airport to receive 

a visitor. To mitigate this issue, we use a weighted 

combination of structural similarity and semantic similarity, 

denoted as sim𝑜𝑏𝑗, as our final similarity metric:  

sim(𝐺1, 𝐺2) = α sim𝑠𝑡𝑟(𝐺1, 𝐺2) + (1 − α)sim𝑜𝑏𝑗(𝐺1, 𝐺2) , 

where sim𝑜𝑏𝑗(𝐺1, 𝐺2) =
𝑂𝕤∩𝑂𝜋𝑖

𝑂𝕤∪𝑂𝜋𝑖

 is the Jaccard coefficient of the 

set of (grounded) objects in 𝐺1 and 𝐺2, and 𝛼 (0 ≤ 𝛼 ≤ 1) 

governs the weights associated with sim𝑠𝑡𝑟 and sim𝑜𝑏𝑗. 

4. Empirical Study 

Our empirical study builds on our earlier pilot study (Vattam 

et al. 2014), where we tested SET-PR at varying input error 
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levels but did not compare it to a baseline. Also we did not 

compare different variants of SET-PR. In this study, we 

investigated the following hypotheses:  

H1: SET-PR’s action-sequence graph representation for 

plans increases recognition performance in the 

presence of input errors. 

H2: Including state information in input action sequences 

and plans improves error tolerance. 

H3: Combining structural and semantic similarity 

outperforms using either in isolation. 

3.1 Empirical Method 

We compared the performance of a baseline algorithm with 

three versions of SET-PR, all using J for graph matching. 

(We consider the other similarity metrics in §4.) 

 Baseline: Inputs and plans contained action sequences 

(no state information), treated as symbols (not converted 

to a graph representation); matching was  computed 

using edit distance (no graph matching). 

 SET-PR[A,0.5]: Inputs and plans contained action 

sequences (no state information), represented as action-

sequence graphs; 𝛼 = 0.5 (equal weights for structural 

and semantic similarity). 

 SET-PR[AS,0.5]: Inputs and plans contained action, 

state sequences, represented as action-sequence graphs; 

𝛼 = 0.5. 

 SET-PR[AS,0.33]: This is a variant in which 𝛼 = 0.33 

(slightly lower weight for structural similarity). 

We conducted our experiments in the paradigmatic 

blocks world domain because it is simple and permits the 

quick automatic generation of a plan library with the desired 

characteristics. We used the hierarchal task network (HTN) 

planner SHOP2 (Nau et al. 2003) to generate plans for our 

library. Planning problems were created by randomly 

selecting initial and goal states (ensuring that the goal can 

be reached from the initial state), and given as input to 

SHOP2. The number of blocks used to generate the plans 

ranged from 9 to 12. We used this method to generate 100 

plans for our library. The average plan length was 12.48. In 

the baseline condition, we stored the generated plan along 

with the goal as a case in the case base. In the non-baseline 

conditions, the generated plan was converted into an action-

sequence graph (using actions only in SET-PR[A,0.5], and 

using actions and states in SET-PR[AS,0.5/0.33]), and 

stored along with the goal as a case in the case base. 

We used the following plan recognition metrics (Blaylock 

and Allen 2005): (1) precision, (2) convergence rate, and (3) 

convergence point. To understand these metrics, consider a 

plan recognition session in which the recognizer is given 𝑥 

input actions, which are streamed sequentially. After 

observing each action, the recognizer uses the available 



action sequence to query and predict a plan. The first query 

will be 〈𝑎1〉, the second 〈𝑎1, 𝑎2〉, and so on until 

〈𝑎1, 𝑎2, ⋯ 𝑎𝑥〉 (in SET-PR[AS] these will be action-state 

sequences). Each session consists of 𝑥 queries and 

predictions. Precision reports the number of correct 

predictions divided by total predictions for a single session.2 

Convergence is true if the correct plan is predicted by the 

end of the session and false otherwise.  If a correct 

prediction is followed by an incorrect prediction at any point 

in the observation session, the convergence flag will be reset 

to false. Convergence rate is the percentage of sessions that 

converged to true. If a session converges, convergence point 

reports the number of actions after which the session 

converged to the correct plan divided by the total number of 

actions. Convergence point is averaged only for those 

sessions that converge. Lower values for convergence point 

indicate better performance, whereas higher values for 

convergence rate and precision indicate better performance.  

 We evaluated the plan recognition metrics using the 

leave-one-in (Aha and Breslow 1997) testing strategy as 

follows. For each randomly selected case 𝑐 = (𝜋0, 𝑔0) ∈ ∁, 

we copied plan 𝜋, randomly distorted its action-sequence 

〈(𝑛𝑢𝑙𝑙, 𝑠0), (𝑎1, 𝑠1), … , (𝑎𝑔, 𝑠𝑔)〉 to introduce a fixed and 

equal amount of mislabeled and missing error (for 

mislabeled, a specified percentage of actions in 𝜋 was 

randomly chosen, and each was replaced with another action 

randomly chosen from the domain; for missing, a specified 

percentage of actions was randomly chosen, and each was 

replaced with an unidentified marker ‘*’.). This distorted 

plan was used as an incremental query to SET-PR (i.e., 

initially with only its first action, state pair, and then 

repeatedly adding the next such pair in its sequence). The 

error levels tested were {10%, 20%, 30%, …, 90%}. 

3.2 Results 

Figure 1 plots performance versus error levels across three 

metrics. For convergence rate, SET-PR[AS,0.5] and SET-

PR[AS,0.33] outperformed Baseline and SET-PR[A,0.5]. 

Baseline’s convergence fell sharply between 10% and 20% 

error rate, while SET-PR[A,0.5]’s degradation was more 

gradual, though it reached low levels at 40%. SET-

PR[AS,0.5] and SET-PR[AS,0.33] maintained a 

convergence rate of 35% to 50% even at higher error rates.  

 For average precision, in the absence of any error, 

Baseline’s precision was higher than the SET-PR variants. 

This is because SET-PR’s approximate graph matching 

technique used can assign the same score to multiple plans 

with minor differences, in which case a random plan was 

selected. This can reduce average precision. With greater 

plan diversity in the library, we conjecture the performance 

of SET-PR will be similar to that of the Baseline in the zero 
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error case. However, in the presence of error Baseline’s 

precision fell sharply. Again, SET-PR[AS,0.5] and SET-

PR[AS,0.33] performed best for higher error levels. 

  For average convergence point, Baseline recorded the 

lowest values, but that is not indicative of its superior 

performance because its convergence rate is low even in the 

10% input error condition (the converged set had too few 

data points). Similarly, the convergence point for SET-

PR[A,0.5] does not afford meaningful comparison beyond 

the 20% error rate. Only SET-PR[AS,0.5] and SET-

PR[AS,0.33] can be meaningfully compared in this test, and 

SET-PR[AS,0.33] performed better at all error rates. 

For convergence rate and precision, Baseline performed 

comparatively poorly at all non-zero error levels, 

particularly when using action-state sequence 

representations in SET-PR, lending some support to H1. 

These results also lend support to H2; actions-only SET-

Figure 1: Performance of Baseline and three variations of SET-

PR with a varying input error rate using three metrics. 



PR[A,0.5] was outperformed by the other two variants with 

state information on all three metrics at all non-zero error 

levels (with the exception of convergence point at high error 

levels characterized by a low convergence rate). 

 Figure 2 displays the performance of SET-PR[AS] with 

levels of 𝛼 ranging from 0.0 (purely semantic similarity) to 

1.0 (purely structural) in four increments. This shows that 

using only semantic similarity performs well on two metrics 

but poorly on a third, while purely structural similarity 

performs poorly for two of the metrics. The best overall 

performance was attained when 𝛼 = 0.33 taking, all three 

parameters into account. This lends support to H3. 

4. Discussion 

Our results for H2 suggest that plan representations rich in 

state information, such as SET-PR’s action-state sequences, 

enable more informed predictions because states capture the 

context of actions. Plan recognition techniques that rely 

solely on actions exhibit brittleness even when a small 

proportion of input actions are mislabeled or missing. Our 

results for H3 suggests that SET-PR is sensitive to 𝛼 

(structural vs semantic similarity), but the best observed 

value of 𝛼 = 0.33 could be domain specific. In future work 

with other domains, we will assess the extent to which SET-

PR is sensitive to 𝛼. 

Our study in §3 may be influenced by several factors (e.g., 

the similarity metric that was used). In an exploratory 

analysis, we examined whether J was an appropriate choice 

by testing all four similarity metrics using SET-

PR[AS,0.33]. As Figure 3(a) shows for convergence rate, 

while performance deteriorates with increasing levels of 

input error, J performs on par with W, and outperformed S 

substantially. Similarly, we found that J, W, and B 

outperformed S on precision, while S performed well on 

convergence point, though this is not indicative of its 

superior performance because its convergence rate was low 

beyond the 20% error rate (i.e., too few data points in the 

converged set to derive a trend). This suggests that, for these 

studies, J is an appropriate choice.  

However, a factorial study of other design choices would 

reveal a more complicated story. For example, Figure 3(b) 

plots the convergence rate for the same algorithms but with 

input errors containing only one type of error (missing 

actions). In contrast to using the other similarity metrics, the 

convergence rate of SET-PR[AS,0.33] for S does not 

deteriorate with higher error levels. Our conjecture is that S 

is more sensitive to the size of the MCS, and theoretical 

Figure 2: Performance of SET-PR[AS], varying from purely 

semantic (𝛼 = 0) to purely structural (𝛼 = 1) similarity.    

Figure 3: Convergence rate of SET-PR[AS,0.33] with different 

degree sequence similarity metrics, given (a) both mislabeled 

and missing actions, and (b) only missing actions.  



analyses may reveal that the MCS (as a percentage of graph 

size) of two randomly-sampled graphs, for higher error 

rates, is much higher when the errors are constrained to 

missing actions. We will test for this in future work, and 

whether this behavior is limited to our current domain and 

plan libraries. 

5. Summary and Future Work 

We described SET-PR, a case-based approach to the 

problem of plan recognition that can tolerate mislabeled and 

missing actions in the input action sequences. We 

highlighted SET-PR’s case representation (action-sequence 

graphs) and SET-PR’s similarity function, which combines 

degree sequences similarity and semantic similarity for 

matching action-sequence graphs. We described an 

empirical study where we found evidence to support our 

hypotheses that SET-PR’s action-sequence graph 

representation for plans and the inclusion of state 

information in these representations increases plan 

recognition performance in the presence of input errors. We 

also found that combining structural and semantic similarity 

outperforms using either in isolation. 

 For future work, we will conduct a factorial study of our 

design choices, with the objective of explaining some of the 

trends that we observed (e.g., why SET-PR[AS,0.33] with 

Simpson’s similarity metric maintained a high convergence 

rate even at higher levels of errors). We will also integrate 

and test SET-PR in other domains, including a human-robot 

teaming domain. We will also compare SET-PR’s 

performance with that of other state-of-the-art plan 

recognizers in the presence of input errors. Finally, we will 

examine more sophisticated graph similarity metrics (e.g., 

graph kernels) and compare them against the simple degree 

sequence metrics that SET-PR currently uses. 
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